Vector bundles near a negative curve: moduli and local Euler characteristic

نویسنده

  • E. Ballico E. Gasparim
چکیده

We study moduli spaces of vector bundles on a two dimensional neighborhood Zk of an irreducible curve C ' P with C = −k and give an explicit construction of these moduli as stratified spaces. We give sharp bounds for the local Euler characteristic of bundles on Zk and prove existence of families of bundles with prescribed numerical invariants.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Moduli of Vector Bundles on Curves in Positive Characteristic

Let X be a projective curve of genus 2 over an algebraically closed field of characteristic 2. The Frobenius map on X induces a rational map on the moduli space of rank-2 bundles. We show that up to isomorphism, there is only one (up to tensoring by an order two line bundle) semi-stable vector bundle of rank 2 with determinant equal to a theta characteristic whose Frobenius pull-back is not sta...

متن کامل

Sklyanin Algebras and Hilbert Schemes of Points

We construct projective moduli spaces for torsion-free sheaves on noncommutative projective planes. These moduli spaces vary smoothly in the parameters describing the noncommutative plane and have good properties analogous to those of moduli spaces of sheaves over the usual (commutative) projective plane P. The generic noncommutative plane corresponds to the Sklyanin algebra S = Skl(E,σ) constr...

متن کامل

Rationality and Poincaré Families for Vector Bundles with Extra Structure on a Curve

Iterated Grassmannian bundles over moduli stacks of vector bundles on a curve are shown to be birational to an affine space times a moduli stack of degree 0 vector bundles, following the method of King and Schofield. Applications include the birational type of some Brill-Noether loci, of moduli schemes for vector bundles with parabolic structure or with level structure and for A. Schmitt’s deco...

متن کامل

The Euler Characteristic of Local Systems on the Moduli of Genus 3 Hyperelliptic Curves

For a partition λ = {λ1 ≥ λ2 ≥ λ3 ≥ 0} of non-negative integers, we calculate the Euler characteristic of the local system Vλ on the moduli space of genus 3 hyperelliptic curves using a suitable stratification. For some λ of low degree, we make a guess for the motivic Euler characteristic of Vλ using counting curves over finite fields.

متن کامل

2 00 5 Chern classes of reductive groups and an adjunction formula Valentina

In this paper, I construct noncompact analogs of the Chern classes of equivariant vector bundles over complex reductive groups. For the tangent bundle, these Chern classes yield an adjunction formula for the Euler characteristic of complete intersections in reductive groups. In the case where the complete intersection is a curve, this formula gives an explicit answer for the Euler characteristi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006